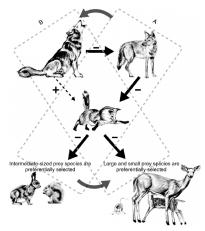
The Company Canids Confront:

Resource Partitioning in Sympatric Carnivores in an Arid Ecosystem

Kadambari Devarajan

Post Graduate Program in Wildlife Biology and Conservation, National Center for Biological Sciences, Wildlife Conservation Society - India Program, Bangalore.


> Abi Tamim Vanak (ATREE) Vishwesha Guttal (CES, IISc)

Outline

- A County for Carnivores
 - An Introduction
- (Little) Ark in the Desert
 - Wildlife in the Banni
- Game of Thorns
 - Study Design and Methods
- Eat, Stay, Move
 - Resource Partitioning Results

A County for Carnivores

- Predators important for ecosystem function
- Multiple predators in a landscape
- Size-mediated interactions

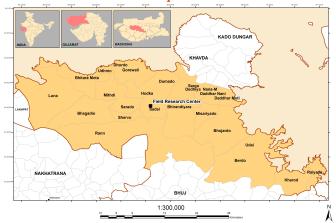
[Levi & Wilmers, 2012]

Carnivore Interactions

- Lethal interactions
 - Intra-guild predation
 - Intra-guild competitive killing
- Sub-lethal interactions
 - "Landscape of fear"

Species-scapes

"... a spatial plane of species interactions that combines with resources and habitat structure to drive species distributions"


[Fisher et al., 2012]

Objective

Identify how sympatric carnivores partition resources: space, time, habitat, and diet

Ark in the Desert

Banni Location Map - Kachchh District

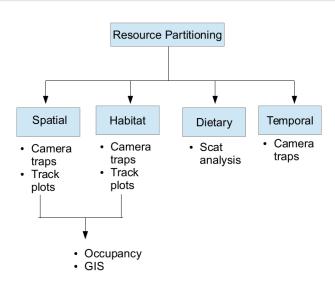
http://bannigrassland.klink.co.in/images/Banni%20Location_2.jpg

Habitats

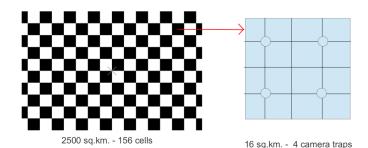
Image source: Pankaj Joshi

Carnivores in the Banni

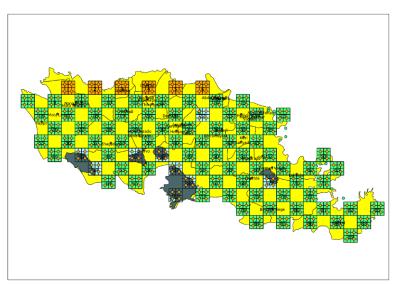
Indian fox image: Abi Vanak

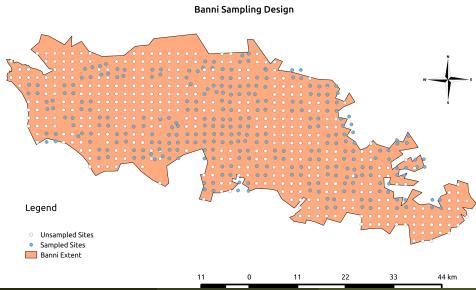

Other Carnivores

- Indian wolf very rare
- Jungle cat, caracal, desert cat
- Striped hyena



Desert cat in Banni


A Game of Thorns


Methodology: Grids

Methodology: Sampling

Methodology: Sampling

Data Collection: Effort

- Camera trapping: All canids
 74 grids * 4 camera traps * 4 days
 ≈ 300 cameras * 4 nights → 1200 camera trap nights
- ullet pprox 6500 videos 30 seconds each

Data collection: Effort

- Photographic capture-recapture: Dogs
 - 17/50 villages in Banni stratified random sampling
 - based on village size (no. of households)

Data collection: Covariates measured

On ground:

- Vertical density
- Ground cover
- Vegetation type
- Presence of other canid species
- Food availability burrow count, indirect signs of prey
- Anthropogenic influences dung pat count, lopping

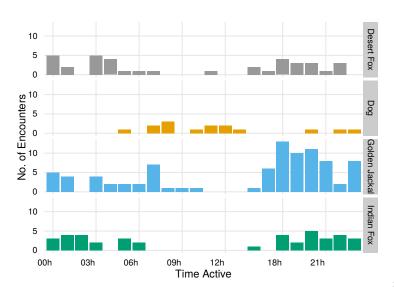
Data collection: Covariates measured

- Remotely-sensed/GIS:
 - Proximity to human habitation
 - Proximity to road
 - Proximity to water source
 - Vegetation type

Desert fox in Banni

Indian fox in Banni

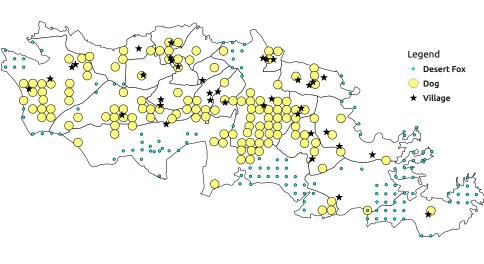

Dog in Banni


Golden jackal in Banni

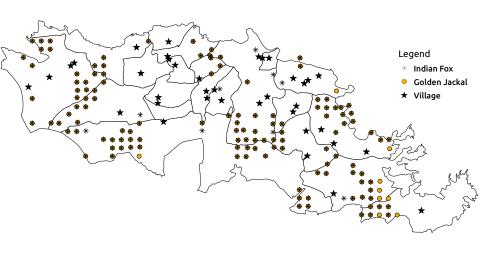
Eat, Stay, Move

Very little dietary partitioning

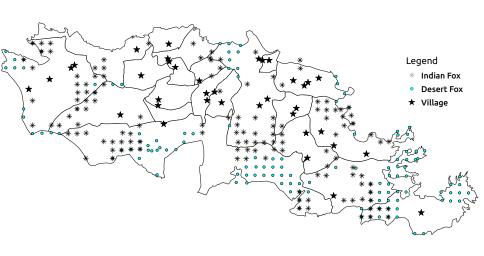
Wild canids crepuscular + nocturnal

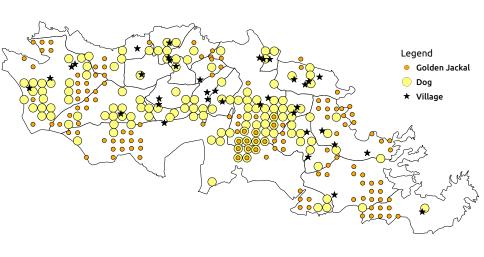


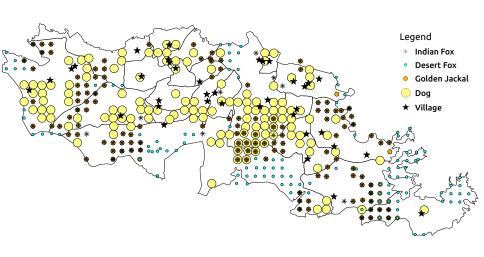
Naïve occupancy

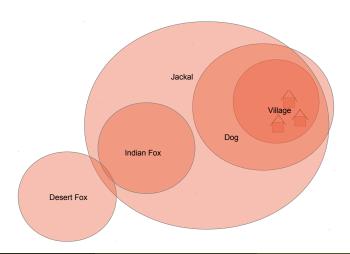

From camera trap data:

Species	Sites Present	Total Sites	%
Indian Fox	61	675	9
Golden Jackal	392	675	58
Desert Fox	81	675	12
Dog	74	675	11


DF & Dog - Complete separation


IF & GJ - Complete overlap


IF & DF - Near complete separation


GJ & Dog - Some overlap

Spatial partitioning: All canids

Spatial partitioning: Conceptual diagram

Species interactions: Occupancy analysis

From β values estimated from best model:

Species	IF	DF	Jackal	Dog
IF		-ve	+ve	-ve
DF	0		-ve	-ve
Jackal	0	0		+ve
Dog	0	0	-ve	

Conclusions

- Very little dietary partitioning
 - Especially among foxes
 - Minor differences in plant matter

Conclusions

- Wild canids primarily crepuscular + nocturnal
 - Dogs diurnal
 - No canids active 2 to 4 PM

Conclusions

- Desert fox spatial partitioning with other canids
- Dog spatial partitioning with other canids
- Indian fox & golden jackal spatial overlap

Acknowledgements

- Dr. Abi Tamim Vanak
- Dr. Vishwesha Guttal
- Dr. Ajith Kumar
- Chandni Gurusrikar, Dr. Pankaj Joshi, Dr. Suhel Quader, Chandrima Home, Kulbushan S. Suryawanshi, Anil Gohil, Girish Puniabi, Ovee Thorat, N. Lakshminarayanan, Chetan Misher, Chintan Sheth, Ameya Gode, Javashree Ratnam, Tarun Nair, Priyanka Runwal, Dharmaveer Shetty, Jayashree Ratnam,
- Megha Kumra Meghwal, Rasul Sodha Jatt, Mutthalib Bhai, Kabul Halepotra, Salim Mama
- Dr. Prabhu Ramachandran
- Family

References

- Aiyadurai, A. and Y.V. Jhala. (2006) Foraging and habitat use by Golden Jackal (Canis aureus) in the Bhal Region, Gujarat, India. J. Bombay Nat. Hist.Soc., 103(1): 5-12.
- Donadio, E. & Buskirk, S.W. (2006) Diet, Morphology, and Interspecific killing in Carnivora. American Naturalist. Vol.167, No.4.
- Fisher, J.T., Anholt, B., Bradbury, S., Wheatley, M., & Volpe, J.P. (2012) Spatial segregation of sympatric marten and fishers: the influence of landscapes and species-scapes. Ecography, 35: 001-009.
- Gese, E.M., Stotts, T.E., & Grothe, S. (1996) Interactions between coyotes and red foxes in Yellowstone National Park, Wyoming, J. Mammalogy, 77(2):377-382.
- Gompper, M.E. & Vanak, A. T. (2008). Subsidized predators, landscapes of fear, and disarticulated carnivore communities. Animal Conservation 11: 13-14.
- Hersteinsson, P. & Macdonald, D.W. (1992) Interspecific competition and the geographical distribution of red and Arctic foxes Vulpes vulpes and Alopex lagoous. Oikos. 64:505-515.
- Jhala, Y. V. & Moehlman, P.D. (2004) 6.2. Golden Jackal Canis aureus Linnaeus, 1758. In: Sillero-Zubiri, C., Hoffmann, M., & Macdonald, D. W. (eds): Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan. IUCN-SSC Canid Specia list Group.
- Kamler, J. F., Stenkewitz, U., Klare, U., Jacobsen, N.F., & Macdonald, D.W. 2012. Resource partitioning among cape foxes, bat-eared foxes, and black-backed jackals in South Africa. Journal of Wildlife Management 76:1241-1253.
- Kamler, J. F., Stenkewitz, U., & Macdonald, D.W. 2013. Lethal and sublethal effects of black-backed jackals on cape foxes and bat-eared foxes. Journal of Mammalogy 94:295-306.

References

- Roemer, G.W., Gompper, M.E., & van Valkenburgh, B. (2009) The ecological role of the mammalian mesocarnivore. BioScience, Vol.59, No.2.
- Sarmento, P.B., et al. (2010) "Habitat selection and abundance of common genets Genetta genetta using camera capture-mark-recapture data." European Journal of Wildlife Research 56.1: 59-66.
- Scheinin, S., Yom-tov, Y., Motro, U., & Geffen,E. (2005) Behavioural responses of red foxes to an increase in the presence of golden jackals: a field experiment. Animal Behavior, 71: 577-584.
- Sillero-Zubiri, C., Hoffman, M., & Macdonald, D.W. (2004) (Technical Editors) Canids: Foxes, Wolves, Jackals, and Dogs. Gen. Tech. Rep. Status Survey and Conservation Action Plan, IUCN/SSC Canid Specialist Group.
- Smith, D.W., Peterson, R.O., & Houston, D.B. (2003) Yellowstone after wolves. BioScience, 53(4):330-340.
- Levi, Taal, & Wilmers, Christopher. Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93.4 (2012): 921-929.
- Vanak, A.T., Irfan-Ullah, M. & Peterson, T. (2008). Gap analysis of Indian fox conservation using ecological niche modeling. Journal of the Bombay Natural History Society 105: 49-54.

References

- Vanak, A.T. & Gompper, M.E. (2009). Dogs emph(Canis familiaris) as carnivores: Their role and function in intraguild competition. Mammal Review 39: 265-283 - Included in 2012 Mammal Review Virtual Issue.
- Vanak, A. T., Thaker, M & Gompper, M. E. (2009). Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behavioural Ecology and Sociobiology 64:279-287.
- Vanak, A.T. & Gompper, M.E. (2009). Dietary niche separation between sympatric free-ranging domestic dogs and Indian foxes in central India. Journal of Mammalogy 90:1058-1065.
- Vanak, A.T. & Gompper, M.E. (2010). Interference competition at the landscape level: the effect of free-ranging dogs on a native mesocarnivore. Journal of Applied Ecology 47: 1225:1232.
- Vanak, A. T., Fortin, D., Thaker, M., Owen, C, Lehmann, M, Greatwood, S. & Slotow, R. (2013). Moving to stay in place: behavioural mechanisms of co-existence in an African large carnivore guild. Ecology.
- Voigt, D.R. & Earle, B.D. (1983) Avoidance of coyotes by red fox families. J. Wildlife Mgmt. Vol. 47, No. 3, pp. 852-857.
- Zielinski, W.J. & Kucera, T.E., technical editors. (1995) American marten, fisher, lynx, and wolverine: survey methods for their detection. Gen. Tech. Rep. PSW-GTR-157. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 163 p.

"Kutch nahi dekha, to kuch nahi dekha!" - *The Gujarat Tourism Slogan*

THANK YOU!