Making Sense of Data

Kadambari Devarajan

http://kadambarid.in kadambari.devarajan@gmail.com

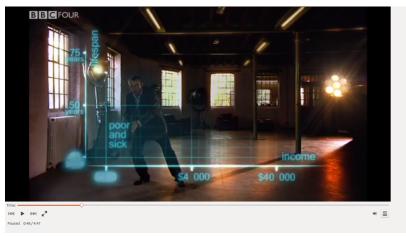
Data Science with R Workshop for Engineering Undergraduates

Outline

- Data Science
 - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization

Outline

- Data Science
 - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization



Outline

- **Data Science**
 - Data, Datasets, Statistics
- - R + RStudio
 - The UI
 - R Basics
 - Visualization

A World of Data

Hans Rosling's 200 Countries, 200 Years

A World of Data

Hans Rosling's River of Myths

"Scientists seek to answer questions using rigorous methods and careful *observations*. These observations - collected from the likes of field notes, surveys, and experiments - form the backbone of a statistical investigation and are called **data**." - OpenIntro Statistics

- Shopping Amazon/Flipkart/BigBasket when you buy something, when you don't; Recommendations
- Food Zomato/Burrp; Recommendations, Suggestions, Popularity
- Accommodation Housing, Hotels, Airbnb
- Travel Makemytrip/Expedia/Goibibo/TripAdvisor; Redbus, IRCTC, Airlines; Maps, Traffic
- Online Google, Facebook, Twitter, Blogs when you say/post/tweet/like/delete/visit/search for something

- Shopping Amazon/Flipkart/BigBasket when you buy something, when you don't; Recommendations
- Food Zomato/Burrp; Recommendations, Suggestions, **Popularity**
- **Accommodation** Housing, Hotels, Airbnb
- Travel Makemytrip/Expedia/Goibibo/TripAdvisor: Redbus. IRCTC, Airlines; Maps, Traffic
- Online Google, Facebook, Twitter, Blogs when you say/post/tweet/like/delete/visit/search for something

- Entertainment IMDB/RottenTomatoes/YouTube, News
- Science and Technology Publications, Books, Research, Journals, Experiments
- Education EdX/Coursera/Udacity/KhanAcademy,
 Universities, Placements, Curriculum, Student/Staff info
- Business and Industry Finance, Stock Market, Manufacturing; Sales
- Agriculture Crop yields, Pesticide use, Sustainability, Organic farming
- Health Hospitals, Diseases, Pharma, Medicines, Trials

- Entertainment IMDB/RottenTomatoes/YouTube, News
- Science and Technology Publications, Books, Research, Journals, Experiments
- Education EdX/Coursera/Udacity/KhanAcademy,
 Universities, Placements, Curriculum, Student/Staff info
- Business and Industry Finance, Stock Market, Manufacturing; Sales
- Agriculture Crop yields, Pesticide use, Sustainability, Organic farming
- Health Hospitals, Diseases, Pharma, Medicines, Trials

Dataset

- A collection of related sets of information
- Composed of different elements, but can be operated as a single unit
- Contents of table or matrix of data, where every column denotes a variable, and each row corresponds an element or member of the collection of data

Data Science

Some combination of three related disciplines:

- Data analysis Gathering, display, and summary of data
- Probability Laws of chance
- Statistical inference Science of drawing statistical conclusions from specific data using knowledge of probability

Data Science

Steps:

- Visualize/Analyze
- Infer
- Model
- Predict

Statistics

- The art and science of extracting meaning from data
 - Summarizing data
 - Visualizing data
 - Estimating and interpreting quantities
 - Making inferences

Statistics

 Quantifying uncertainty - "I am 95% confident that by the end of this class, between 82% and 87% of you will be able to make a plot!"

Vitalstatistix?!

Image Source: http://asterix.wikia.com/wiki/Vitalstatistix

- -ve: Challenger Space Shuttle exploded in 1986, killing 7 astronauts.
 - Decision to launch in cold weather, without analysis of performance data at low temp
- +ve: Salk Polio Vaccine, trials on 4,00,00 children
 - Strict controls against biased results + good statistical analysis → vaccine effectiveness + polio eradication

Exercise

Collect student weight in kg

- Dot Plot
- Frequency Table Class Interval, Midpoint, Frequency, Relative Frequency
- Histogram Bar graph where
 - each bar = interval
 - center = midpoint
 - bar height = no. of data points in interval
- Stem-and-Leaf Diagram

Class Intervals: Guidelines

- Intervals of equal length + midpoints at convenient round numbers
- ullet Small data set o (Use) Few intervals
- Large data set → (Use) More intervals

Summary Statistics

Important properties of data/measurements:

- Central or typical value
- Spread around the value wide, narrow

Summary Statistics: Center

An array or table of data: **Observation** (1, 2, ... n) and **Data Value** $(x_1, x_2, ... x_n)$

- Mean average value; add all the data and divide by number of observations
 - $\bar{x} = (x_1 + x_2 + ... + x_n)/n$
- Median midpoint of data after sorting in ascending order
 - Odd 2 3 9 9 11
 - Even 2 3 9 9 \rightarrow (3+9)/2 = 6

Summary Statistics: Center

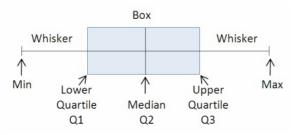
Why more than one measure of center?

- Median not sensitive to outliers or extreme values
 - Example: No. of friends on Facebook
 - Data 50, 50, 100, 100, 200
 - Median 100; Mean 100
 - If instead of 200, someone has 2000 friends:
 - Median remains the same, while Mean = 460!

- Suppose all of you weigh exactly the same. What will the spread be?
- Suppose you had some wrestlers (Sakshi Malik, Phogat Sisters) and badminton players (PV Sindhu, Saina Nehwal) in your group. How will the histogram look then?

Interquartile Range:

- Order data numerically and find the median
- Divide the data into 2 groups at the median, say Highs and Lows
- Find the median of Lows (called the first quartile or Q1)
- Find the median of Highs (called the third quartile or Q3)
- Calculate the interquartile range using IQR = Q3
 - Q1



In the group weight example, what does the IQR tell you?

It gives the difference between a median heavy and median light student.

 In the group weight example, what does the IQR tell you?
 It gives the difference between a median heavy and median light student.

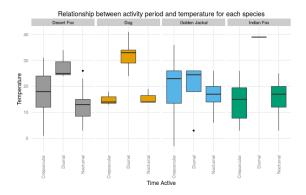

Box and Whiskers Plot

Image Source:

http://faculty.nps.edu/mjdixon/styled-11/styled-13/styled-18/files/pasted-graphic.jpg

Box and Whiskers Plot

- Outlier: Point more than 1.5 IQR from box ends
- Great for showing differences between groups

Summary Statistics: Standard Deviation

Population Variance =
$$(\sigma x)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Sample Variance =
$$(Sx)^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Image Source: https://mathbitsnotebook.com/Algebra1/StatisticsData/STSD.html

Measures spread from mean

Properties of Mean and SD

- Very good at summarizing symmetrical histograms without outliers
- For such bell-shaped data:
 - approx. 60% of the data is within 1 SD of the mean
 - approx. 95% of the data is within 2 SD of the mean

Hypothesis Testing

- Formulate hypotheses
 - Null (usually) observations are a result of pure chance (i.e. random)
 - Alternate observations are because of a real effect + chance variation
- Identify a test statistic
- p-value If null hyp is true, then probability of observing a test statistic at least as extreme as that observed
- Compare p-value to a set significance level (if p-value <= alpha, then null hyp ruled out)

Hypothesis Testing

Truth

	Hypothesis Testing	The Null Hypothesis Is True	The Alternative Hypothesis Is True
Research	The Null Hypothesis Is True	Accurate	Type II Error
	The Alternative Hypothesis Is True	Type I Error	Accurate

Image Source: http://cramster-image.s3.amazonaws.com/definitions/stat-1-img-1.png

Hypothesis Testing

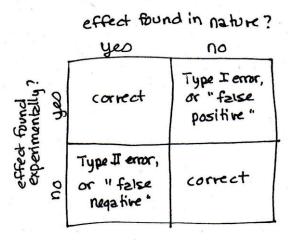


Image Source: http:

// www.economists doit with models.com/wp-content/uploads/2010/02/type-i-type-ii-error-1.jpg and the content of the content

Sampling Design

- Quality vs. Quantity: both important in sampling
- Choosing a representative sample
- Types:
 - Random Unbiased and Independent; Simple
 - Stratified Divide population units into homogeneous groups and then draw SRS from each group
 - Cluster Group the population into small clusters, draw SRS of clusters, and observe everything in sampled cluster
 - **Systematic** Start with randomly chosen unit, then select every n-th unit

Sampling Exercise

- Pull 5 candies out of the bag
- Put the candies back in the bag!
- The candy weights are on the board
- Multiply the weights of the 5 candies you picked by 20
- Make a note of your estimate
- Tell me the weight of the bag
- The best estimate gets the full bag of candies :)

The Candy Exercise

- Let us tally the estimates made by every individual in the class
- Estimate Value : Tally
 - 880: ||||
- This is a dataset!

- What are we studying?
 - Estimating weight of the bag.
- What are we sampling?
- What is our sample size?
- What type of sampling did we do?
- Were we able to estimate the weight of the bag accurately?
- Why or why not?
 - Sampling bias; Small candy tend to go to the bottom of the bag
 - Erroneous values
- What is the moral of this exercise?

- What are we studying?
 - Estimating weight of the bag.
- What are we sampling?
- What is our sample size?
- What type of sampling did we do?
- Were we able to estimate the weight of the bag accurately?
- Why or why not?
 - Sampling bias; Small candy tend to go to the bottom of the bag
 - Erroneous values
- What is the moral of this exercise?

- What are we studying?
 - Estimating weight of the bag.
- What are we sampling?
- What is our sample size?
- What type of sampling did we do?
- Were we able to estimate the weight of the bag accurately?
- Why or why not?
 - Sampling bias; Small candy tend to go to the bottom of the bag
 - Erroneous values
- What is the moral of this exercise?

Using this data, make:

- List: Estimate, Tally, Total Count
- Dot Table
- Stem-and-leaf Plot
- Frequency Table Class Interval, Midpoint, Frequency, Relative Frequency
- Histograms

The Candy Exercise: Quiz

Using the Candy dataset collected in class,

- Calculate the Mean, Median, and Mode.
- Calculate Q1, Q2, Q3, and IQR.
- Make a box-and-whiskers plot

Variables

Types:

- Numerical
 - Continuous
 - Discrete
- Categorical
 - Regular Categorical
 - Ordinal

Variables: Numerical

- Observations can take any value in a set of real numbers
- Can add, subtract, take averages
- Example:
 - Discrete Numerical values with jumps; can take only certain number of values (finite or countably infinite)
 - No. of items bought at a market, Population counts, Census
 - Continuous Opposite of discrete; infinite possible values
 - Height, Weight, Time, Government spending, Fluid measurements (milk, water)

Variables: Categorical

- Observations that form categories
- CanNOT add, subtract, take averages
- Example:
 - Regular Categorical One or more categories, no order
 - States, Countries, Gender
 - Ordinal Levels have a natural order
 - Economic status, Education

Distributions

Figure 6A.15: Distributional Choices

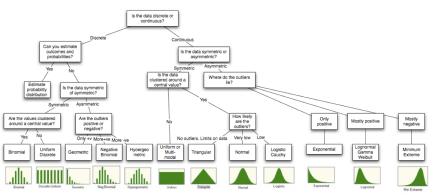


Image Source: https://www.r-bloggers.com/fitting-distributions-with-r/

Study Design

Studies can be classified into:

- Observational The researcher studies a system, but does not influence the outcome.
- **Experimental** The researcher influences the system, then observes what happens.

Observational Studies

Types:

- Cross-sectional: Census
- Longitudinal: Aging and health-related studies
- Cohort: HIV and cancer incidence

Experimental Studies

Types:

- Controlled: Drug trials
- Natural:
 - Cholera outbreak
 - Smoking ban
 - Nuclear weapons testing
 - Many studies in meteorology, astronomy, geology, and ecology
- Field:
 - Clinical trials
 - Product prototypes
 - Many studies in anthropology, ecology, social sciences, economics, pharmaceuticals

Experiments and Causality

- Is chocolate good for you?
- Does demonetization act as a deterrant to lavish weddings?
- What causes breast cancer?

What do these questions have in common?

Experiments and Causality

- All of them attempt to assign a cause to an effect!
- Data + Statistics can help answer such questions!

Lies, Damned Lies, and Statistics

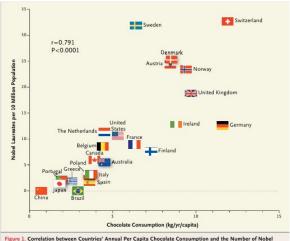
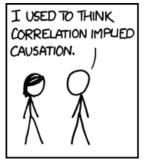



Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

Image Source: http://www.nejm.org/doi/full/10.1056/NEJMon1211064

Lies, Damned Lies, and Statistics

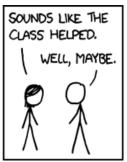


Image Source: http://imgs.xkcd.com/comics/correlation.png

Gotchas

- Never convert a categorical variable to a number and then use it in analysis!
- When trying to interpret or analyse data, always look for gaps!
- When trying to explain missing places/anomalies in the data - if it's not convenient, don't discard!
- Outliers matter!
- Treat data analysis like a detective story! The why's and how's matter!

Outline

- Data Science
 - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization

20000 feet view of R

- Programming language not just a statistics package!
- Object-oriented
 - data/information stored as objects
 - operations on objects
- Flexible and powerful

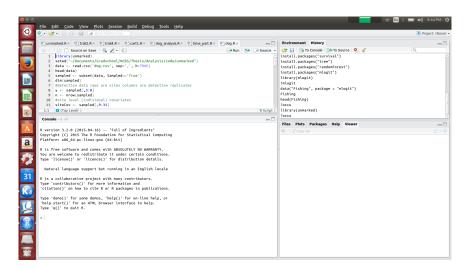
Why R Rocks

- One of the most powerful environments for statistics, currently
 - Interactive
 - Data structures
 - Functions as objects
 - Missing data
- Command-line = Clarity!
- Avoiding the dangers of button-clicking

Why R Rocks

- Safety with scripts
- Pretty pictures graphics and visualization
- Free (as in "free beer" AND "freedom")
 - Packages
 - Community

In your terminal:


```
# Add R repository to
 # /etc/apt/sources.list file
sudo echo
  "deb http://cran.rstudio.com/bin/
 linux/ubuntu xenial/" | sudo tee -a
  /etc/apt/sources.list
# Change 'ubuntu' and 'xenial' based on
# your Linux distribution and version
```

```
# Add R to Ubuntu keyring
$ gpg --keyserver keyserver.ubuntu.
com --recv-key E084DAB9
$ gpg -a --export E084DAB9 |
sudo apt-key add -
```

```
# Install R-base
$ sudo apt-get update
$ sudo apt-get install
r-base r-base-dev
```

```
# Install RStudio
$ sudo apt-get install gdebi-core
$ wget https://download1.rstudio.
org/rstudio-1.0.44-amd64.deb
$ sudo gdebi -n
rstudio-1.0.44-amd64.deb
$ rm rstudio-1.0.44-amd64.deb
```

RStudio

The UI

Outline

- - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization

Getting to Know the UI

- Console
- Help
- File editing
- File browser
- Plots
- Menus

RStudio Basics

- Files Open, Save
- Executing

If typing directly in the console, just pressing 'Enter' will suffice for the command to be executed. However, if typing in the source (recommended), 'Ctrl-Enter' will do the trick.

- Executing a block of commands
- Multiline commands and the '+' symbol

Some Ground Rules

- Everyone must type along
- Any text following the command prompt (">") has to be typed into your Source or Console
- The output has not been given in the slides

Some Tips

- Navigation on console
 - Arrow keys
 - Tab completion
- Help
- Help using functions
 - ?- calls help file for builtin function
 - ?? searches all builtin functions for the word
- > ?sin
- > ?mean
- > ??mean

Outline

- - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization

Let's Get Rolling with R

Basic Arithmetic

```
> 23 + 79 # Evaluates expression
# and prints the result
```

- The '>' symbol is called the 'prompt'
- Anything following the '#' symbol is a 'comment'

Let's Get Rolling with R

Expressions

- > 12/4 + 2 # Operator precedence
- 12/(4 + 2) is different from (12/4) + 2
- Use parantheses

R as a Calculator

Try these:

- > 17 + 24
- > 1.23456*42
- > 47/6
- > 4.567^54
- > 2/4 + 1
- > 2/(4 + 1)

R as a Scientific Calculator

Try these:

```
> sqrt(3)
> sin(pi/2)
> asin(0.5)
> asin(0.5)*180/pi
> log(2)
> log(2)
```

Assignment

Assignment binds information to an object "<-" is the assignment symbol "=" can also be used

```
> x <- 5
# Assign 5 to the variable x
> y <- 4
> x
> x + y
> wt = 50
> val1 <- x - y</pre>
```

Assignment

```
> x + 4
> val1*30
> x^3
```

Objects

- Everything is an object
- Objects can be of different types
- Objects contain data
- We can perform operations on objects

Naming Objects

- Names must always start with a character (never a numeral)
- Names are case sensitive (wt is different from WT and wT)
- Names can be separated by an underscore (eg. female_wt) or a period (eg. female.wt)
 - Never use a space for separating compound names (eg. female wt is invalid)

R Basics

Object Types

```
> wt < -60.3
# Object type - Numeric
> x <- "hello"
# Object type - String
#(or Character)
> 7 <- TRUE
# Object type - Logical
#(TRUE or FALSE)
# Double precision float
```

Object Types

- Vectors
 - Simplest
 - Series of elements of a single data type
 - Similar to a column of values in a spreadsheet
- Matrices
- Data frames

Object Types: Vectors

Create using 'concatenate' - c(<comma separated list>)

```
> data <- c(1,4,3,2,1)
# c() stands for concatenate
# Values put into the same vector
> data*2
# Simultaneous operations - Useful
 functionality of vectors
 Operations on a vector are
# carried out one element at a time
> alphabet <- c("a", "b", "c", "d")</pre>
# Vector of type 'character'
```

Object Types: Vectors

Exercise:

```
> x <- 5
> x <- x + 1
> a <- c("x", "y", "z")
> a <- c(1, 2, "c")
> x <- c(1, 2, 3, 4)
> a[3]
> x[2]
> x[c(1, 3, 4)]
```

Find the type of an object:

> typeof(x)

Accessing Elements of a Vector

```
> b <- c("a", "b", "c", "d")
# Vector b of type 'character'
> h
> b[1]
# Value of the first element of b
> b[c(2,4)]
# Value of 2nd and 4th
# elements of b
> d <- b[-1]
# Assign all of vector b
# except the first element to d
```

Relational Operations

```
Operators - <, <=, >, >=, ==, != Try these:
```

```
> x <- 2
> x > 4
> x < 5
> a <- c(1, 2, 3, 4)
> a != 3
```

Logical Vectors

```
> a <- c(1,3,4,5)
> a[a<3]
This is the same as:
> a[c(TRUE, FALSE, FALSE, FALSE)]
Now try:
> which(a<3)</pre>
```

Exercise

- Create a vector 'vec' containing the values 10 through 60 in increments of 10
- Display the elements of 'vec'
- Increase every element of the vector by 5 and assign these values to a new vector 'vec1'

Exercise

- Display the elements of 'vec1'
 - In how many ways can the 3rd and 5th elements of 'vec1' be displayed?
 - Display the values of the 3rd and 5th (of 'vec') using the methods discussed
- Display all elements of 'vec1' that are less than 35
 - less than and equal to 35

Logical Operations

 Exercise: Display elements of 'vec1' greater than 20 and less than and including 65

Do not confuse

- The relational operator > and the command prompt >
- \bullet < -, =, and ==
 - Assign Assignment Operator < and =
 - Check/Verify Relational Operator ==

Do not confuse

- The different brackets used:
 - Parantheses () eg. functions
 - Square brackets [] eg. vector operations
 - Curly braces {} eg. expressions (enclosing an expression that already uses parantheses)
 Note () and {} can be use interchangeably for most part

Object Types: Functions

- Functions have a name and a variable number of arguments
- Built-in functions
- User defined functions

```
> ?log
> log(x=100, base=10)
# The arguments x and base are
# passed to the function log()
> log(100,10)
# Arguments can be passed in right
```

Object Types: Functions

Generating a sequence of numbers:

```
> seq(from=2, to=20, by=2)
# Function to generate regular
# sequence of nos.
```

Generating random numbers:

```
> runif(n=10)
# Default - random numbers
# from 0 to 1
> runif(n=100, min=0, max=100)
```

Summarizing Data

```
> a <- runif(n=100)</pre>
> b < -a[a<0.5]
> length(b)
# Count of no. of elements in b
> sum(b)
# Sum of the elements in vector b
> mean(b)
> sd(b)
> median(b)
> summary(b)
```

```
> b_seq <- 1:length(b)</pre>
> plot (x=b_seq, y=b)
```

R Basics

Matrices

```
> x < -matrix(c(5,7,9,6,3,4),nrow=3)
> y < - matrix(c(5,7,9,6), ncol=2)
> dim(x)
> x[1,1]
> x[2,]
> x[,2]
> x[2]?
> x%*%y
> t(x)
> solve(y)
```

Readily Available Data

R comes bundled with ready datasets that one can play around with.

```
# Load the package MASS
# (Modern Applied Statistics with S)
> library(MASS)
# List all the datasets in
# loaded packages
> data()
> data(iris)
# will load the dataset Iris
# into memory
```

Popular Built-in Datasets

- iris
- trees
- orange
- cars
- islands
- mtcars
- sleep
- titanic
- women

Built-in Datasets

```
> data()
> trees
# Also try ?trees
> summary(trees)
> head(trees)
> tail(trees)
```

This is a dataframe!

Accessing Elements of a Dataframe

```
> trees[1:5,]
> trees[,2]
```

- > names(trees)
- > trees\$Girth
- > trees\$Volume

Accessing Elements: 'attach' function

Attach to a dataset:

- > attach(trees)
- > mean(Height)
- > mean (Girth)
- > detach(trees) # When finished

Accessing Elements: 'with' function

with can be conveniently used instead of attach

```
> plot(iris$Petal.Length ~
+ iris$Species)
> with(iris, plot(Petal.Length ~
+ Species)) # Same thing!
Notice, no need to detach
I recommend using 'with' instead of 'attach'!
```

```
# Histogram
> hist(trees$Height)
# Boxplot
> attach(trees)
> boxplot (Height)
# Scatterplot
> plot(Height, Girth)
> detach(trees)
```

Exercise: Rewrite these to use 'with' instead of 'attach'

Multiple plots:

```
> attach(trees)
> par(mfrow=c(2,2))
> hist(Height); boxplot(Height)
> hist(Volume); boxplot(Volume)
> detach(trees)
> par(mfrow=c(1,1))
```

Exercise: Rewrite these to use 'with' instead of 'attach'

Other plots:

- > barplot (1:10)
- > ?pie

Categorical Data

Explore the **iris** dataset (as was shown for **trees**).

```
> iris$Species
> pie(iris$Species)

# Using 'table'
> table(iris$Species)
> pie(table(iris$Species))
```

Plotting Data: Using Formulae

- Very convenient with categorical data
- Use ~ to create a formula

```
> boxplot(iris$Petal.Length ~
+ iris$Species)
> plot(iris$Petal.Length ~
+ iris$Species) # Same thing!
> plot(iris$Petal.Length ~
+ iris$Species, col=c("red", "blue",
+ "green"))
```

Subsetting

Subsets of vectors/data frames

```
> subset(iris,
+ iris$Species=="setosa")
> subset(iris, Species=="setosa")
# Also works!
> subset(iris, Species="setosa")
# Wrong!
> subset(iris, select=
+ c(Petal.Width, Petal.Length))
# Check docs for more options
```

Creating Your Own Dataframes

```
> x <- 1:20
> y <- x*x
> z <- y + 10
> df <- data.frame(x=x, y=y, z=z)
> df
> df <- data.frame(a=x, b=y, c=z)
# Changes name of column
> names(df)
```

Add/Remove Columns

```
> df$total <- df$x + df$y
# Error!
> df$total <- df$a + df$b
# Adds a column called 'total'
> names(df)
# To remove this column:
> df$total <- NULL
> names(df)
```

Add/Remove Rows

```
> rbind(df, c(-1, -2, -3))
> df
# Also check the cbind function
```

Using ifelse

```
> x < -1:10
> ifelse(x < 6, "blue", "green")</pre>
> ifelse(x < 4, "blue",</pre>
+ ifelse(x < 7, "green", "red"))
# Color values in scatterplot
> with(iris, plot(
    Petal.Length, Petal.Width,
    col=ifelse(
        Species=="setosa", "red",
          ifelse(
          Species=="virginica",
           "blue", "green"))))
```

Missing Values

- Indicated by NA
- Typically automatically handled
- Use is.na to find the NA values

```
> x <- 1:5; y <- x*x
> plot(x, y)
> x[3] <- NA
> is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
> plot(x, y)
```

Type-along Exercise

```
> wt < -c(69, 73, 70, 69, 90, 48, 48)
> mean(wt)
> summary(wt)
> plot(wt)
> hist(wt*20)
> hist(wt, breaks=4)
> hist(wt*20, breaks=7,
+ xlim=c(500,2500), col="blue")
# Vertical line on existing graph
> abline(v=930)
```

R Scripts

- Use RStudio to create the code
- Save it to filename.R
- Run it directly using menus/shortcut
- Run it on console using:
 - > source("file.R")

Working Directory

Set working directory

- If R can't find relative files
 - > getwd()
 - > setwd()
 - > setwd("~/Documents/Gradschool
 - + /Analysis/code/unmarked")
- Using the UI
 - Menu: Session ⇒ Set Working Directory
 - Shortcut: Ctrl+Shift+H

Reading a .csv file

Reading CSV data

```
> read.csv("file.csv")
> read.csv("http://www.ats.ucla.
edu/stat/data/hsb2.csv")
> data <- read.csv('pop.csv',</pre>
sep=',', h=TRUE)
```

Explore the data, summarize and visualize.

Writing a .csv file

```
#Create a data frame
> data <- read.table(header=TRUE,</pre>
text='
subject sex size
          M
      2 F
               NA
        F
          M 11
```

Writing a .csv file

```
# Write to a file, suppress row names
> write.csv(data, "data.csv", row.names=FALSE)
# Same, except that instead of "NA", output
#blank cells
> write.csv(data, "data.csv",
row.names=FALSE, na="")
# Use tabs, suppress row names and column names
> write.table(data, "data.csv", sep="\t",
row.names=FALSE, col.names=FALSE)
```

The Candy Exercise: Sampling

- Create another dataset
- Large, Small, Bag_Wt, where:
 - Large No. of large candy
 - Small No. of small candy
 - Bag_Wt Estimated bag weight
- Add columns for total weight of large candy, total weight of small candy - every individual
- Add a column for the total weight of the bag
- Tot_Candy, Wt_Large, Wt_Small
- Formula: Weight of the bag: [(x*L)+((5-x)*S)]*20
- Tot_Wt = [(Large*Wt_Large) + (Small*Wt_Small)]*20

Loops in R

```
# Counter
> for(i in 1:10) {
# Task for each iteration
print(i)
}
```

R Basics

Loops in R

```
> for(movie.actor in
c("Rajnikanth", "Kamal Haasan",
"Shahrukh Khan", "Aamir Khan",
"Nagarjuna", "Venkatesh")) {
cat (sprintf("Hello %s...\n",
movie.actor))
```

R Basics

Loops in R

```
> x <- 1:10
> y <- rep(NA, length(x))
> for(i in 1:length(x)) {
  y[i] \leftarrow x[i] ^2
> print(y)
```

Working with Lists

```
> str(iris)
> head(iris)
> sp.l <- split(iris,iris$Species)
> str(sp.l)
> for(sp in sp.l) {
   print(head(sp))
}
```

Working with Lists

Calculate the statistics of each species:

```
> res <- list()</pre>
> for(n in names(sp.1)){
 dat <- sp.1[[n]]</pre>
 #Extract the data from the list
 res[[n]] <- data.frame(species=n,
                          mean.sepal.length=
                          mean (dat$Sepal.Length),
                          sd.sepal.length=
                          sd(dat$Sepal.Length),
                          n.samples=
                          nrow(dat))
 print (res)
```

Working with Lists

Converting the list obtained into a data frame:

```
> res.df <- do.call(rbind, res)</pre>
```

```
> print(res.df)
```

lapply() takes 2 arguments - a list and a function, and returns a list.

```
# Continuing with the Iris dataset
> lapply(sp.1,nrow)
# #Arguments can also be
# provided to the function
> lapply(sp.1,head,n=2)
```

sapply()

lapply() returns a list, sapply() simplifies the list to a vector.

sapply(sp.1, nrow)

R Basics

sapply()

Doesn't always work the way you expect!

```
> res <- sapply(sp.1, function(dat){</pre>
r <- data.frame(mean.sepal.length=
                  mean (dat $ Sepal . Length) ,
                  sd.sepal.length=
                  sd (dat $Sepal . Length) ,
                  n.samples=nrow(dat))
return(r)
})
> print(res)
```

tapply()

Takes care of subsetting too.

```
> tapply(iris$Sepal.Length,
iris$Species, mean)
```

Does in one line, while sapply() takes many!

```
> sp.1 <- split(iris,iris$Species)
> res <- sapply(sp.1, function(d) {
  mean(d$Sepal.Length)
  })
> print(res)
```

tapply()

Can only work on a single vector at a time. Bypassed by:

```
> traits <- data.frame(sepal.len.mean=</pre>
tapply(iris$Sepal.Length,iris$Species,
mean), sepal.len.sd=
tapply(iris$Sepal.Length,
iris$Species, sd),
n.obs=tapply(iris$Sepal.Length,
iris$Species, length))
> print(traits)
```

replicate()

Repeats an expression many times. Useful for bootstrapping or sampling from distributions.

```
> reps <- replicate(1e5,
max(rnorm(100)))
> hist(reps,breaks=100)
```

Bootstrapping

Steps:

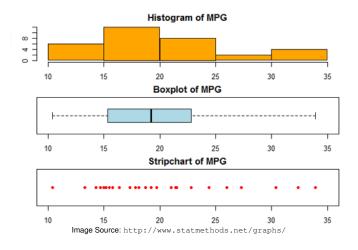
- Resample a given data set a specified number of times
- Calculate a specific statistic from each sample
- Find the SD of the distribution of that statistic

```
# sample(x, size, replace, prob)
```

```
# Function to bootstrap the
# standard error of the median
> b.median <- function(data, num) {</pre>
  resamples <- lapply(1:num,
  function(i) sample(data, replace=T))
  r.median <- sapply(resamples,</pre>
  median)
  std.err <- sqrt(var(r.median))</pre>
  list(std.err=std.err,
  resamples=resamples, medians=
  r.median)
```

```
# Generate the data to be used
> data1 <- round(rnorm(100, 5, 3))</pre>
# Save the results of the
# function b.median in the object b1
> b1 <- b.median(data1, 30)</pre>
# Display the first of the 30
# bootstrap samples
> b1$resamples[1]
```

```
# Display the standard error
> b1$std.err


# Display the histogram of
# the distribution of medians
> hist(b1$medians)
```

```
# Display standard error
# in one loc
> b.median(rnorm(100, 5, 2),
50) $std.err
# Display the histogram of the
# distribution of medians
> hist(b.median(rnorm(100, 5, 2),
50) $medians)
```

Outline

- Data Science
 - Data, Datasets, Statistics
- R + RStudio
 - The UI
 - R Basics
 - Visualization

Plots Great and Small

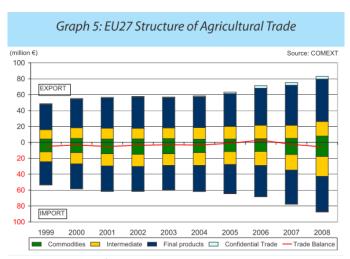
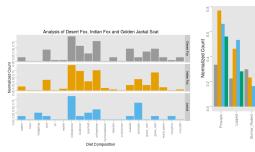
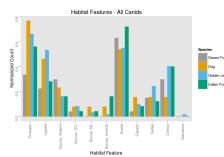
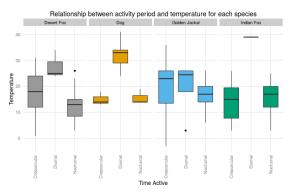




Image Source: https://learnr.wordpress.com/



ggplot2 - Grammar of Graphics

ggplot2 - Grammar of Graphics

- 3D plots
- Interactive graphs

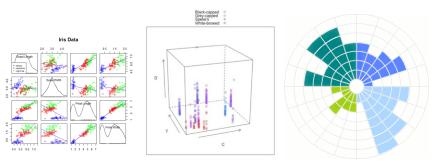
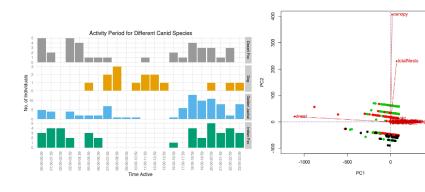



Image Source 1: http://www.statmethods.net/advgraphs/index.html

Image Source 3: https://learnr.wordpress.com/2010/08/16/consultants-chart-in-ggplot2/

Advanced Analysis

500

Packages in R

- Installing packages
- The Comprehensive R Archive Network CRAN
 - https://cran.r-project.org/
- Some important packages:
 - Data wrangling, data analysis: dplyr, plyr, tidyr, reshape2, janitor
 - Data import, web scraping: rvest, scrapeR
 - Data visualization: ggplot2, shiny
 - Engineering and Science: randomForest, tree
 - Social science: demography, survey, sampling

Installing Packages

- Through UI
- Through command-line
 - With root access on Linux:

```
# install.packages("packagename")
```

- > install.packages("ggplot2")
- > library(ggplot2)

Installing Packages

Without root access on Linux:

```
# Create a directory to install
# packages
> install.packages("ggplot2",
lib="/data/RPackages/")
# Where /data/RPackages is an
# example directory
> library(ggplot2,
lib.loc="/data/Rpackages/")
```

Installing Packages

- To avoid typing /data/RPackages everytime:
 - Create file .Renviron in your home area
 - Add the line R LIBS=/data/Rpackages/ to it
- Setting repository:
 - Create a file .Rprofile in your home area
 - Add these lines to it:

```
cat(".Rprofile: Setting UK
repository")
r = getOption("repos") # hard
# code the UK repo for CRAN
r["CRAN"] =
"http://cran.uk.r-project.org"
options(repos = r)
rm(r)
```

```
> install.packages(ggplot2)
> library(ggplot2)
> head(iris)
# By default, head displays the first
# 6 rows
> head(iris, n = 10)
# We can also explicitly set the
# number of rows to display
```

```
> qplot(Sepal.Length, Petal.Length,
data = iris)

# Plot Sepal.Length vs. Petal.Length,
# using data from the 'iris'
# data frame.
```

> qplot(Sepal.Length, Petal.Length,

data = iris, color = Species)

```
> qplot(Sepal.Length, Petal.Length,
data = iris, color = Species,
size = Petal.Width)

# We see that Iris setosa flowers
# have the narrowest petals.
```

```
> qplot(Sepal.Length, Petal.Length,
data = iris, color = Species,
size = Petal.Width, alpha = I(0.7))
# By setting the alpha of each
# point to 0.7, we reduce the
# effects of overplotting.
```

```
> qplot(Sepal.Length, Petal.Length,
data = iris, color = Species,
xlab = "Sepal Length",
ylab = "Petal Length",
main = "Sepal vs. Petal Length in
Fisher's Iris data")
```

Line charts

```
> qplot(Sepal.Length,
Petal.Length, data = iris,
geom = "line", color = Species)
# Using a line geom doesn't
# really make sense here.
```

Line charts

```
# 'Orange' is another built-in
# data frame that describes
# the growth of orange trees.
> qplot(age, circumference,
data = Orange, geom = "line",
colour = Tree, main = "How does
orange tree circumference
vary with age?")
```

Line charts

```
# We can also plot
# both points and lines.
> qplot(age, circumference,
data = Orange,
geom = c("point", "line"),
colour = Tree)
```

Regression

two (or more) variables

Statistical tool to establish relationship between

- Predictor variable Value obtained through experiments
- Response variable Value derived from predictor variable

Regression

Of many kinds:

- Linear Simple, Multiple
- Logistic
- Polynomial
- Ridge
- ...

Linear Regression

- Two (or more) variables related through an equation
- Exponent of both variables is 1
- Linear relationship is mathematically represented by a straight line when plotted as a graph (in 2D; changes for more dimensions)
- Non-linear relation exponent of any variable not 1
 curve

Linear Regression

- y = ax + b
 - y response variable
 - x predictor variable
 - a and b constants called coefficients

Example of Regression

Predicting weight of a person given her height

- Experiment sample of observed values of height and corresponding weight
- Create a relationship model using lm() function in R
- Find the coefficients from the model
- Create a mathematical equation using the coefficients
- Get summary of the relationship model to know the average error in prediction (called Residuals).
- Predict the weight of new individuals using the predict() function in R

Im() function in R

Basic syntax is: lm(formula,data)

- formula symbol presenting relation between x and y
- data vector on which formula will be applied

Example of Regression

```
> x \leftarrow c(151, 174, 138, 186, 128, 136,
179, 163, 152, 131)
> y < -c(63, 81, 56, 91, 47, 57,
76, 72, 62, 48)
# Apply the lm() function.
> relation <- lm(y~x)</pre>
> print(relation)
> print(summary(relation))
```

predict() function in R

Basic syntax is: predict(object, newdata)

- object formula that was created using lm()
- newdata vector with new value for predictor variable

Example of Regression

```
# Find weight of a person with
# height 170
> a <- data.frame(x = 170)
> result <- predict(relation,a)
> print(result)
```

Example of Regression

Visualizing the regression graphically:

```
# Give the chart file a name
> png(file = "linear regression.png")
# Plot the chart
> plot(x,y,col = "red",main =
"Height & Weight - Regression",
 abline (lm(y\sim x)), cex = 1.3, pch = 16,
xlab = "Height in cm",
vlab = "Weight in kg")
# Save the file.
> dev.off()
```

Class Exercise

- Collect gender, height and weight data in class
- Create a spreadsheet
- Save as a .csv file
- Run a linear regression on this dataset
- Predict the weight for height = 160 cm

Resources

- StackOverflow
- https:
 //cran.r-project.org/manuals.html
- https:
 //www.r-project.org/other-docs.html
- Blog aggregator for posts about R: http://www.r-bloggers.com/
- Courses on EdX, Coursera, Udacity ...

Resources

- R basics: http://cran.r-project.org/ doc/contrib/usingR.pdf
- Quick-R: http://www.statmethods.net/
- Interactive introduction to R: https://www.datacamp.com/courses/ introduction-to-r
- In-browser learning of R: http://tryr.codeschool.com/

Resources

- Data Mining tool in R: http://rattle.togaware.com/
- Online e-book for Data Mining with R: http://www.liaad.up.pt/~ltorgo/ DataMiningWithR/
- Introduction to the Text Mining package in R: http://cran.r-project.org/web/ packages/tm/vignettes/tm.pdf

Interesting Resources

- https://deedy.quora.com/ Hacking-into-the-Indian-Education-System
- https://www.r-bloggers.com/ datasets-to-practice-your-data-mining/
- UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/